

Mask and Reason: Pre–Training Knowledge Graph Transformers for Complex Logical Queries

(kgTransformer)

Xiao Liu*, Shiyu Zhao*, Kai Su*, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong, Jie Tang

Incompleteness of Knowledge Graphs (KGs)

- Real-world KGs are far from complete
 - -Fully-supervised (Human curated)
 - Freebase
 - Wikidata
 - -Semi-supervised (Human-in-the-loop)
 - NELL
 - Knowledge Vault
- Missing edges in querying

Freebase

Complex Logical Queries on KGs

guitar

О

O Prince

O Calvin

OLewis

Einstein **o**

Dylan **C**

Ο

plaño

• Existential Positive First–Order Logic (EPFO)

Query: What musical instruments can Minnesota-born Nobel Prize winners play?

- Hard to query
 - -Queries involve complicated structures
 - -Queries can contain missing edges

Existing Architecture: KG Embeddings

- Nonparameterized logical operators
 - Unlearnable and low-capacity

Query2Box (Ren et al., 2020)Intersection: $\mathbf{p}_{inter} = (Cen(\mathbf{p}_{inter}), Off(\mathbf{p}_{inter}))$ Operator: owlpdaea in embedding space

Continuous Query Decomposition (Arakelyan et al., 2021)

Intersection: $x \cdot y$; min $\{x, y\}$; max $\{0, x + y - 1\}$

Operator: logical T-norm over probabilities of neural link predictor (e.g., Complex)

- Left-to-right reasoning
 - Loss of wider context

Case 1: Minnesota-born Nobel Prize winners

Case 2: Minnesota-born Nobel Prize winners that may like to play certain musical instruments

Problem 1: KG embeddings are low-capacity architectures and only reason from left to right

Existing Training Strategies

- Training: supervised learning
 - -Training on 5 basic query types
 - -But to test on both seen and unseen types (e.g., ip, pi, 2u, up)

Problem 2: supervised learning doesn't generalize to new types well

Challenges

- Model architecture
 - -Exponential complexity
 - Multi-hop query
 - Logical operators
 - -All-direction information
- Training strategies
 - -Transfer and generalize
 - Supervised training is not enough

Advanced and Large-capacity

Strategies to Generalize

kgTransformer

- Pre-training Transformer on KGs
 - -Architecture: kgTransformer
 - A more advanced architecture that can encode query graphs
 - -Training strategy: Masked Pre-training & Fine-tuning

• Pre-training can encourage generalization

Architecture: kgTransformer

- Triple Transform
 - -Represent a relation edge as a relation node
 - -Unknown entities are replaced by [MASK]

Architecture: kgTransformer

- Model capacity is crucial
- Increase hidden dimension d:
 - -Quadratic space complexity $O(d^2)$
 - -Performance saturation
- Need other solutions to scale up model capacity

Architecture: kgTransformer

Observation: sparsity in kgTransformer
 —Feed–forward Network (FFN) is sparsely activated (10~20%)

1. Vaswani et al., Attention is all you need, 2017

Architecture

- Mixture-of-Experts (MoE): scaling model-capacity via sparsity
 - -Split FNN into experts
 - -Only involve experts predicted to be activated (by Gating Network)

(a) Architecture: KGTransformer & Mixture-of-Experts

Training: Masked Pre-training & Fine-tuning

- Mask pre-training on random sampled queries
 - -Two-stage Pre-training
 - -Stage 1: Initialization
 - Dense and large subgraphs
 - -8 to 16 entities per query
 - Random Walk with Restart (RWR)
 - -Vanilla (might contain rings)←
 - -Tree-based←
 - Learn arbitrary-shaped queries
 - -Encourage generalization

Training: Masked Pre-training & Fine-tuning

- Mask pre-training on randomly sampled queries
 - -Two-stage Pre-training
 - -Stage 2: Refinement
 - Sparse and small graphs RWR-.
 - 5 basic query type
 - Similar to test setting

Training: Masked Pre-training & Fine-tuning

- Mask Fine-tuning
 - -Fine-tuning
 - Training over preprocessed datasets of 5 basic query types
 - -Out-of-domain Generalization
 - Combining knowledge from pretraining and fine-tuning

(b) Masked Pre-training & Fine-tuning

Summary: kgTransformer

- Pre-training Transformer on KGs
 - -Architecture: kgTransformer with Mixture-of-Experts
 - -Training strategy: Masked Pre-training & Fine-tuning

(a) Architecture: kgTransformer & Mixture-of-Experts

(b) Masked Pre-training & Fine-tuning

Experimental Results

- 9 reasoning tasks
 -5 in-domain
 - -4 out-of-domain
- Improvements (Relative)
 - -NELL995: +6.1%
 - -FB15k-237: +15.9%

 Table 1: Main Hits@3m for complex query reasoning on FB15k-237 and NELL995 benchmarks (bold denotes the best results;

 underline denotes the second best results)

Dataset	Model	Avg	Avg w/o u	In-domain					Out-of-domain			
				1p	2p	3р	2i	3i	ip	pi	2u	up
NELL995	GQE [11]	0.248	0.270	0.417	0.231	0.203	0.318	0.454	0.081	0.188	0.200	0.139
	Q2B [26]	0.306	0.317	0.555	0.266	0.233	0.343	0.480	0.132	0.212	0.369	0.163
	EmQL [31] ¹	0.277	0.294	0.456	0.231	0.172	0.331	0.483	0.143	0.244	0.226	0.207
	BiQE [19]	-	0.344	0.587	0.305	0.326	0.371	0.531	0.103	0.187	-	-
	CQD(CO) [1]	0.368	0.370	0.667	0.265	0.220	0.410	0.529	0.196	0.302	0.531	0.194
	CQD(Beam) [1]	<u>0.375</u>	0.385	0.667	0.350	0.288	0.410	0.529	0.171	0.277	0.531	0.156
	KGTransformer	0.398	0.406	0.625	0.401	0.367	<u>0.405</u>	0.546	0.203	<u>0.300</u>	<u>0.469</u>	0.270
FB15k-237	GQE [11]	0.230	0.250	0.405	0.213	0.153	0.298	0.411	0.085	0.182	0.167	0.160
	Q2B [26]	0.268	0.283	0.467	0.240	0.186	0.324	0.453	0.108	0.205	0.239	0.193
	EmQL [31] ¹	0.219	0.241	0.389	0.201	0.154	0.275	0.386	0.101	0.184	0.115	0.165
	BiQE [19]	-	0.293	0.439	0.281	0.239	0.333	0.474	0.110	0.177	-	-
	CQD(CO) [1]	0.272	0.290	0.512	0.213	0.131	0.352	0.457	0.146	0.222	0.281	0.132
	CQD(Beam) [1]	0.290	0.315	0.512	0.288	0.221	0.352	0.457	0.129	0.249	0.284	0.121
	KGTransformer	0.336	0.357	<u>0.479</u>	0.323	0.277	0.398	0.539	0.190	0.294	0.295	0.225

¹ EmQL's reported results are not under the standard metric. We have verified the mismatch with its authors and re-evaluated the performance.

Ablation Study

- How much does pre-training contribute?
 - -26.2 -> 33.6 (FB15k-237);
 - -28.8 -> 39.5 (NELL995)

Table 3: Ablation on certain pre-training & fine-tuning strategies adopted (Hits@3m).

	FB15k-237	NELL995
KGTransformer (Stage 1 + Stage 2)	0.336	0.395
-only Stage 1 in pre-training	0.308	0.307
-only Stage 2 in pre-training	0.307	0.398
-w/o fine-tuning	0.301	0.368
-w/o pre-training	0.262	0.288

Ablation Study

- Number of Expert
 - -Helpful when growing from 2 (vanilla) to 32

- Label smoothing
 - -A very useful technique for random sampled queries in pre-training

Ablation Study

- MoE Efficiency
 - -Expanding model capacity x16 times
 - -Costs in time: +11.6%~38.7%

Table 4: Training and inference time per step (ms) along with different number of experts using per step batch size 64.

	Number of experts				
	2	8	16	32	x16 times
Pre-training stage 1	41.46	42.02	45.38	49.30 (+18.9%)	
Pre-training stage 2	17.37	18.83	19.78	24.09 (+38.7%)	
Fine-tuning	32.41	32.91	36.46	37.47 (+15.6%))
Inference	12.86	13.36	13.85	14.35 (+11.6%)	

Conclusion

Method

- -Architecture: kgTransformer with MoE scaling up
- -Training: Masked pre-training and fine-tuning
- Results
 - -Better performance on FB15k-237 and NELL995
 - -Better generalizability and interpretability
- Code: <u>https://github.com/THUDM/kgTransformer</u>

